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Enormously diverse chemical structures, ranging from antibodies
to organometallic complexes, have been used to achieve chiral
recognition. Despite this structural diversity, the basic mechanism
by which chiral recognition is achieved is nearly universal. To
discriminate between the enantiomers of a substrate, a receptor must
have a chiral three-dimensional shape that positions its functional
groups in such a way that itsnonbondinginteractions, whether
repulsive (steric effects) or attractive (electrostatic, van der Waals,
hydrogen bonding, or hydro- or solvophobic interactions), are
significantly different in the two diastereomeric complexes formed
with the substrate.1 Even when covalent bonds are used to anchor
the substrate to the receptor, the actual chiral discrimination is
generally accepted to require dissymmetric nonbonding interac-
tions.2 Here we describe a fundamentally different approach to chiral
recognition: the use of a dissymmetric electronic structure to
discriminate between enantiomers on the basis of chiral bonding
interactions.

Bis(â-diketonato)titanium(IV) alkoxides, (dike)2Ti(OR)2, are
readily prepared and are invariably chiral, with aC2-symmetric,
cis geometry.3 While theσ-bonding in an octahedral (dike)2TiX2

complex is essentially achiral (pseudo-C2V symmetry), theπ-bonding
is intrinsically chiral. Each diketonate has only one effective
π-donor orbital, theπ-nonbonding HOMO, to engage inπ-donation
to the d0 titanium fragment, resulting in oneA- and oneB-symmetry
combination of ligandπ-donor orbitals. In particular, theA-
symmetry ligand combination splits the twoA-symmetry dπ
orbitals, such that one dπ orbital is antibonding with respect to the
diketonate ligands and one is nonbonding. This latter orbital is thus
the complex’s LUMO, and resembles a “tipped” dz2 orbital, with
the direction in which it tips determined by the configuration at
titanium.4 Hybrid DFT calculations (B3LYP, 6-31G* basis)5 on
(acac)2TiCl2 support this qualitative picture (Figure 1a) and indicate
that the LUMO is significantly below both of the other Ti dπ
orbitals (0.32 eV below the b orbital and 0.39 eV below the other
a orbital).6

By itself, there is nothing intrinsically chiral about a dz2 orbital.
However, if a substrate experiences two-point binding to the
(dike)2Ti fragment, then the tipping of the LUMO with respect to
the TiX2 plane does engender dissymmetry. If the substrate is
capable ofπ-donation, then one enantiomer of the substrate can
potentially interact more strongly with the LUMO than the other,
as illustrated for the two enantiomeric conformations of an ethylene
glycolate in Figure 1b. For a Ti center ofΛ configuration, theδ
ligand conformation tilts the oxygenπ-donor p orbitals to improve
alignment with the LUMO and hence the strength of the O-to-Ti
π-donation, while theλ conformation tilts them the opposite way
and should be less favorable. Note that this argument is based
entirely on bonding considerations rather than the steric effects
classically adduced to justify the different stabilities of the
conformations in, for example, Co(en)3

3+.7 Indeed, the sterically

svelte nature of the diketonates, with their monosubstituted oxygen
donors and substituents pulled back by the chelate geometry, makes
this an ideal system to observe electronic effects since steric effects
are expected to be small.

The efficacy of this electronic effect has been probed in
complexes of 1,1′-bi-2-naphtholate (BINOL), which adopts a
characteristic zigzag conformation8 with substantial tilting of the
Ti-O-C plane out of the O-Ti-O plane, with O-Ti-O-C
dihedral angles averaging 42° in monometallic complexes.9

(RCOCHCOR)2Ti(BINOL) complexes (R) CH3, acac; R) Ph,
dbm; R ) tBu, tmhd) are prepared by treating Ti(OiPr)4 with 2
equiv of the diketone and 1 equiv of H2BINOL.10 At room
temperature, the complexes are fluxional, exchanging axial and
equatorial substituents on the diketonate ligands. Titanium dike-
tonates are known to undergo facile trigonal twists,11 which not
only interconvert equatorial and axial substituents but also epimerize
the titanium center and thus allow the diastereomeric BINOL
complexes to equilibrate. When CD2Cl2 solutions of the (dike)2Ti-
(BINOL) complexes are cooled sufficiently to freeze out the
fluxional process, in each case only a single diastereomer is
observed by NMR within the limits of detection (Table 1).12,13The
identity of the diastereomer formed has been determined in the solid
state by X-ray crystallography of the dbm and tmhd complexes to
be theΛ-S/∆-R isomer (Figures 1c and 2a), in agreement with the
electronic predictions based on overlap of the BINOL lone pairs
with the titanium LUMO.

Figure 1. Manifestations of electronic dissymmetry. (a) Calculated LUMO
of (acac)2TiCl2 (B3LYP, 6-31G*). (b) Differential overlap ofA-symmetry
π-donor orbitals of ethylene glycolate toΛ-(dike)2Ti in δ (left) andλ (right)
conformations. (c) Core of (dbm)2Ti(BINOL) (phenyl and BINOL rings
abridged for clarity), illustrating the diastereomer observed in the solid;
(tmhd)2Ti(BINOL) (see Supporting Information) is similar.
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Attribution of the high diastereoselectivities to steric or van der
Waals interactions between the (dike)2Ti and BINOL fragments
seems unlikely on the basis of the small steric profile of the
diketonate ligands and the uniformly high selectivities seen as the
diketonate substituent size is varied. To provide further evidence
against some subtle structural effect, the preparation of the
corresponding tin diketonate complexes (RCOCHCOR)2Sn(BINOL)
was undertaken. Structurally, the tin and titanium complexes should
be close analogues, as seen in the structures of the two (dbm)2M-
(BINOL) complexes (Figure 2). While the Sn-O bonds are∼0.1
Å longer than the Ti-O bonds, the nonbonding contacts are
extremely similar, with the shortest dbm carbon to naphthalene
plane distances of 3.56 (Ti) and 3.48 Å (Sn), and closest dbm
hydrogen to BINOL carbon contacts of 2.70 (Ti) and 2.76 Å (Sn).
Thus, if nonbonding interactions set the relative configurations of
the metal and BINOL stereocenters, the tin and titanium complexes
should show similar diastereoselectivities. In contrast, if binding
stereoselectivity has a principally electronic origin, the much weaker
π-bonding and minimal d orbital participation expected in main
group compounds14 should result in markedly lower diastereose-
lectivities in the tin complexes. In fact, stereodiscrimination is
uniformly modest in the tin compounds (Table 1). Both diastere-
omers are observed in solution for all three complexes, in ratios
that range from about 3:1 to 6:1 and are rather insensitive to
temperature.

The electronic influence of anunsymmetrical coordination sphere
has previously been used to transfer stereochemical information,15

and such electronic asymmetries have often been proposed to
modulate enantioselectivities in catalytic reactions in the presence
of steric contributions to a chiral environment.16 Here we show
that a chiral electronic structure can exist even in the symmetrical
bis(diketonato)titanium(IV) fragment, and that the electronic dis-
symmetry in these complexes can have sufficient energetic con-
sequences to give rise to useful levels of chiral recognition. Efforts
are in progress both to prepare enantiomerically pure (dike)2Ti

complexes and to use their electronic dissymmetry to provide chiral
induction in chemical reactions.
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Figure 2. Thermal ellipsoid plots of (a) (dbm)2Ti(BINOL) and (b)
(dbm)2Sn(BINOL) (40% ellipsoids).

Table 1. Stereoselectivity of Complexation of BINOL to (dike)2M

complex
observed dr

(T of NMR observation)

(acac)2Ti(BINOL) >20:1 (below-50 °C)
(dbm)2Ti(BINOL) >40:1 (below-20 °C)
(tmhd)2Ti(BINOL) >100:1 (below 5°C)
(acac)2Sn(BINOL) 5.4:1 (35°C)

6.7:1 (-15 °C)
(dbm)2Sn(BINOL) 3.6:1 (35°C)

3.0:1 (-15 °C)
(tmhd)2Sn(BINOL) 3.4:1 (35°C)

4.6:1 (-15 °C)
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